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Abstract
Giving feedbackon the degree of nativenessof a student’s
speechisanimportantaspectof computer-aidedlanguagelearn-
ing. This task hasbeenaddressedby many studiesfocusing
on the segmentalassessmentof the speechsignal. To better
modelhumannativenessscores,otheraspectsof speechshould
alsobe considered,suchasprosody. This studyexaminesthe
useof prosodicinformationto evaluatethedegreeof nativeness
of studentpronunciation,independentof the text. Supervised
strategiesbasedon humangradesareusedin anattemptto se-
lect promisingfeaturesfor this task. Previous resultsobtained
with non-native speakersshowed improvementsin thecorrela-
tion betweenhumanandautomaticscores.New strategieswere
evaluatedwith testsincluding native andnon-native speakers.
Specificfeaturesbasedon durations,namelyfor intra-sentence
pauses,revealedpotentialusefor furtherimprovements.

1. Introduction
Theaimof thiswork is to examinetheuseof prosodicinforma-
tion in evaluatingthedegreeof nativenessof pronunciationfor
a text-independenttask.This taskhasbeenaddressedby many
studiesfocusingonthesegmentalassessmentof thespeechsig-
nal [1, 2, 3, 4]. Recently, several studieshave usedsupraseg-
mentalspeechinformation for computer-assistedforeign lan-
guagelearning(e.g. [5]). Thepresentwork’s contribution is to
attemptto selectpromisingfeatures,usinga supervisedselec-
tion strategy basedon humanscoresof nativeness.While we
expectprosodyto carryinformationaboutthedegreeof native-
nessof both sentencesand individual words, in this studywe
concentrateon effectsat theword level. Our methodologywas
basedon threesteps:

1. Featureextraction. Durationalandmelodicinformation
wasobtainedfrom eachsentencein theform of

� Time alignments, obtained with SRI’s DECI-
PHER

���
hidden Markov model (HMM) based

speechrecognitionsystem[6]� Stylizedpitch contours,from a modelof dynamic
prosodicinformation[7]

Potentiallyusefulandmeaningfulfeatureswerederived
from this informationandcombinedwith lexical infor-
mation.

2. Prosodicmodeling.Decisiontreeswereusedto produce
the automaticnativenessscores.Thesetreesweregen-
eratedusing the sameproceduresandparametersas in
previousstudies[1]

3. Combination with other knowledge sources. The
prosodicfeaturesusedin this work werecombinedwith
previously computedscoresof the degreeof nativeness
— basedonspectralmatchandtiming information[2] —
in orderto achieve highercorrelationswith scoresgiven
by humanlisteners.

Preliminaryresultswith non-native speakers have shown
improvementsin thecorrelationbetweenhumanandautomatic
scores[8]. Theseresultsarenow augmentedwith testsetsthat
includenative speakers to provide a wider rangeof scoresas
well asaricherdatabasefor thecalibrationof nativenessscores.

2. Speech data and scoring

The corpuscontainednearly a hundredadult native Japanese
speakers. The setof speakers was fairly balancedon the ba-
sisof genderandEnglishpronunciationabilities,which ranged
from beginning to advanced.Eachspeaker read145sentences
takenfrom a pool of 12,000differentEnglishsentences.These
includedsentencesfrom news broadcasts,literature,children’s
literature,andsimplesentenceswrittenexpresslyfor thisuse.In
addition,a subsetof theWall StreetJournal(WSJ)speechcor-
puswasselected.This allowed our systemto scorethehigher
degreeof nativenessfor native speakers. The training part of
thissubsetwasalsousedto normalizesomeof thefeaturesfrom
bothnative andnon-native corpora.

2.1. Human scoring

Eachutterancefrom the non-native speechcorpuswasgraded
by seven native AmericanEnglishspeakers. The ratingswere
on a scalefrom 1 to 5, wherea ratingof 5 indicatedvery good
pronunciation,andaratingof 1 indicatedthattheutterancehad
a strongforeign accent. The averagecorrelationbetweenthe
raterswascomputedto be 0.8 [1]. The medianof the ratings
from all raterswasfoundfor eachutterance.A scoreof 6 was
assignedto theutterancesselectedfrom theWSJ(native speak-
ers).Thesevalueswereusedasthereferencehumanscoresand
served asthe inputsfor the supervisedclassificationapproach
usedin this study.

2.2. Output of machine scores

Decisiontreesprovide scoresthat canbe evaluatedby differ-
ent measuresof performance[3]. When the goal is to find a
discretescore,aswasaskedof thehumanlisteners,thehighest
posteriorprobabilityoverall possiblediscretescores( �
	 ) given



themachinescore �� canbeused:
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whereG is thenumberof distinctgrades.
A continuousscorecanalsobe derived. Accordingto the

minimumerrorcriteriontheoptimalscoreis givenby

5 * �6.���73 �
(8
	:9�$ � 	<;

+-, � 	 .0��210= (2)

2.3. Evaluation of machine scores

Two measuresof performancewereusedon both discreteand
continuousscores: the correlationand the error betweenthe
humanandtheautomaticscores.Thiserroris theaverageof the
absolutevalueof thedifferencesbetweenthe two scores.It is
presentedhereasapercentageof themaximumerror(difference
betweenthehighestandthelowestscoreof thescaleusedby the
humanlisteners,i.e.,5).

3. Feature extraction
Many of the featuresareaveragesof measurementstakenover
thetime. Theremainderresultedfrom eventsthatwereuniquely
definedin eachutterance,suchasthemaximumor minimumof
a feature. Genderwasthe only featureassumedto be known
and the only one clearly basedon specificspeaker character-
istics. Most of the featuresproposedare basedon durations,
normalizedby the rateof speech(ROS) [4], which was itself
usedasa feature.Thephonedurationsusedwerefurther nor-
malizedby theaveragephonedurationsestimatedfrom anative
Englishcorpus(WSJ).

To definefeaturesrelatedto prosody, we estimateda time
instantfor theprimarystressin eachword. Theseinstantswere
then usedas referencesfor providing text-independentinfor-
mation. Threedefinitionsof the time of primary stresswere
computed:

� The centerof the longestvowel within eachword, ac-
cordingto segmentalforcedalignments

� Thecenterof thevowel carryingprimarylexical stress
� The instantof time of maximumF0 excursionwithin

eachword, the nearestvowel to this instantwas taken
to betheprimarystressedvowel

Usingeachof thesedefinitionswe computedthreefeatures
thatwe refer to astheword stressfeatures:durationof theas-
sumedprimary stressedvowel, durationbetweenthecenterof
thisvowel andthecenterof thenext vowel within theword,and
durationbetweenthe centerof the assumedprimary stressed
vowel and the centerof the previous vowel within the same
word.

3.1. Features derived from forced alignments

The following featuresare averagedurations,computedonly
with theinformationprovidedby theViterbi forcedalignments.
Weusedaveragesof thedurationof intra-sentencepauses,time
betweenthesepauses,anddurationof words,vowels,andtime
betweenthecentersof vowels.A subsetof theWSJcorpuswas
usedto computetheaveragenative durationfor eachvowel in
thephoneinventory. Thedurationof eachvowel in theutterance
wasnormalizedby the correspondingnative averageandused

asafeature.Within eachword thelongestvowel wasfoundand
thewordstressfeatureswerecomputed.

The lexical primary stressedvowel of eachword was lo-
catedin theforcedalignments.Usingthisvowel, thewordstress
featuresandthedurationto thenext lexically stressedvowel (in
a following word) werecomputed.This last featurerepresents
anapproachto estimatingrhythm. Theaveragetime difference
betweenthe maximumF0 excursionandthe longestvowel in
theword completedthis setof lexical features.Thesefeatures
wereaveragedover all wordscontaininglexical primarystress
in theutterance.

3.2. Features based on the pitch signal

ThemaximumF0excursionwithin theutterancewastakenasa
feature[8]. Themaximumandtheminimumvaluesfor thepitch
slopewere found within eachutteranceandusedas features.
Basedon pitch slope,eachframewasalsocategorizedasun-
voiced,rising, or falling. Usingthesecategoriesasa streamof
symbols,abigramwasestimatedfor eachutterance.Thecorre-
spondingrelative frequenciesof transitionsbetweencategories
wereusedasfeatures.Thenumberof rising framesbeforethe
maximumF0 excursion,andthenumberof falling framesafter
this instant,werebothusedasfeatures.Thenumberof changes
in slopeperframewasconsideredanotherfeatureattemptingto
capturethepitchvariation.

We also computedthe averagedurationof rising regions
and the fraction of time theseoccupiedwithin the utterance.
The maximumdurationof consecutive riseswascomputedas
well asthe increasein pitch inside this rising region. Similar
featureswerecomputedfor thefalling frames.Theratio of the
numberof pitchrisesto thenumberof pitch fallswasalsocom-
puted.

3.3. Features based on alignments and pitch information

Combiningtheinformationcontainedin theforcedalignedtran-
scriptionswith the pitch informationenablesus to find the in-
stantof maximumF0 excursionwithin eachword andto mea-
suretime betweenthis instantandotherspeecheventsfoundin
the alignments. Thesemeasurementswere then averagedfor
all the words in the utterance. This set of featuresincluded
thevalueof the maximumF0 excursion,the time betweenthe
maximumF0excursionandthecenterof thenearestvowel, the
time betweenthemaximumF0 excursionandthecenterof the
longestvowel in the word, and the word stressfeaturescon-
sideringthemaximumF0 excursionasthe locationof primary
stress.

3.4. Features from unique events

Mostof thefeaturespreviouslydescribedareaveragesof events
thatcanoccurseveraltimesin theutterance.Thesekindsof fea-
turesaremorereliablefor a text-independentapproach;how-
ever, someunique events can convey important information
about the degree of nativenessof an utterance. Three types
of eventswereconsidered:two longestwithin-sentencepauses,
two longestwords,andtwo longestvowelswithin theutterance.
Thedurationsof eachof theseweretakento befeatures.For the
two longestwordswealsomeasuredthewordstressfeaturesas-
sociatedwith thethreedifferentmethodsfor definingtheinstant
of primarystress.



4. Results and discussion
Previous experiments[8] performedwith non-native speakers
wererepeated,including the subsetof the native WSJcorpus.
A few of the resultsfrom theseexperimentsarerepresentedin
Table1. Theseexperimentsaim to distinguishtheperformance
of featuresbasedon segmentalinformation (o2) from perfor-
manceobtainedjust with thepitch signal(q2). We considered
assegmentalinformation(o2) thethreebasefeatures(posterior,
duration,andROSscores,asproposedandevaluatedin [1]) to-
getherwith all thenew featuresthatdo not usepitch or lexical
stressinformation. In (p2) lexical-stress-basedfeatureswere
combinedwith segmentalfeatures(o2). The last experiment
includesall thefeaturesdescribedin this paper(r2).

discretescores continuousscor.
Features corr. error corr. error

(n2) 3 basefeatures 0.732 14.3 0.763 14.6
(o2) segmental 0.743 13.5 0.767 14.3
(p2) + lexical 0.733 13.7 0.762 14.4
(q2) suprasegmental 0.272 23.6 0.321 22.3
(r2) all theabove 0.728 14.0 0.763 14.5

Table 1: Correlation and error (%) betweenhumanand ma-
chinescoresobtainedwith a corpusincludingbothnativeand
non-nativespeakers.

The useof the segmentalfeatures(o2) provided the best
result. The improvementsfound in correlation,relative to the
featuresusedin previous studies(n2), are 1.5% for the dis-
cretescores(3.4%with the non-native corpus)andonly 0.5%
for continuousscores(1.4%for only non-natives). As before,
combininglexical primary stressinformationdid not improve
performance(p2). The useof all our suprasegmentalfeatures
(q2) provideslittle informationaboutthedegreeof nativeness.
Finally, combiningthesefeatureswith segmentalfeatures(r2)
did not leadto an improvementover usingonly thesegmental
features(o2). Theresultspresentedin Table1 confirmprevious
conclusions[8]. In the following experimentswe decidedto
follow adata-drivenmethodfor selectingagoodsetof features,
insteadof comparingresultsfrom categorical setsof features
(e.g.,segmentalversussuprasegmental).

A first approachwasbasedontheselectionof themostsuc-
cessfulsinglefeaturesin termsof continuouscorrelation.ROS
(g2), duration(j2) andposterior(k2) scores,andaveragedura-
tion betweenintra-sentencepauses(t) have presenteda contin-
uouscorrelationhigherthan > = ? . Theseresultsarein Table2.
As in previousstudiestheposteriorscores(k2) provedto bethe
moreeffective for thepresenttask.

discretescores continuousscor.
Features corr. error corr. error

(g2)ROS 0.371 23.3 0.440 21.3
(j2) duration 0.445 21.0 0.511 20.2
(k2) posterior 0.700 15.8 0.730 15.6
(t) betweenpauses 0.407 20.7 0.427 22.2
(u) all theabove 0.731 14.3 0.763 14.7

Table2: Firstfeatureselectionapproach. Correlationanderror
(%) betweenhumanandmachinescoresobtainedwith a corpus
includingbothnativeandnon-nativespeakers.

The averageduration betweenintra-sentencepauses(t)
aloneproducesresultscomparableto previously derived fea-

turesROSandduration. Thehistogramsfor eachof thegiven
scores,of thevaluesmeasuredfor this feature,arerepresented
in Figure1. It is clearfrom thisfigurethatnativesseldomspeak
continuouslyduring a periodasshortas50 to 100 ms, while
non-nativesdo it moreoften as their degreeof nativenessde-
creases.On the other hand,natives seemsto be more confi-
dentabouttalkingwithoutany recognizedpauseduringperiods
longerthan300ms,while non-nativeshardlydoit for morethan
250ms.
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Figure1: Histogramsof the average duration betweenintra-
sentencepauses. Each histogram representsa single score
value: @A�CBEDGFH�JIKDMLN�POQD/RS� ? D0TU�JVQD0WX�ZY (na-
tive). Thehorizontalaxisis in numberof frames.

Combiningthe singlefeatures,presentingcontinuouscor-
relationhigherthan > = ? (u), providesaresultcomparableto the
useof all the featuresavailable(r2). However, this resultdoes
not show animprovementover previousstudies(n2) andis not
asgood as the oneobtainedby using all the derived features
basedonsegmentals(o2).

Table 3 representssomeresultsobtainedwhile following
our secondapproachfor achieving betterscoreswhile identify-
ing additionalrelevantfeatures.Thisapproachmakesuseof the
threebasefeaturesin associationwith eachoneof thenew fea-
turesproposedin [8]. Theresultspresentedwereselectedfrom
theexperimentsthathave shown a continuouscorrelationof at
least > = [ Y\V . Theadditionalfeaturesusedin theseexperiments
were the averagedurationbetweenlexically primary stressed
vowels (v), averagedurationbetweenthecenterof the longest
vowel within the word andthe centerof the lexically primary
stressedvowel (w), maximumpitch slopewithin theutterance
(x), durationof the longestintra-sentencepause(y), duration
of the second-longestintra-sentencepause(yy), longestword
durationwithin the sentence(z), andrelative frequency of the
rising pitch framefollowedby a falling pitch frame(zz).

Theuseof the longestintra-sentencepause(y) givesusan
increasein thediscreteandcontinuouscorrelationscoreof 2.5%
and0.7%,respectively, whencomparedwith theuseof thebase
features(n2). When comparedwith our previous best result
(o2), thesescoresareonly 0.9%and0.1%better. However, the
discretecorrelationscoreof > = [ V is still thebestever found in
this study. It is interestingto noticethe small improvements
foundin experiments(x) and(zz), sincetheaddedfeaturesare
basedexclusively in thepitch information.



discretescores continuousscor.
Features corr. error corr. error

(n2)basefeatures+ 0.732 14.3 0.763 14.6
(v) btw lex stress& 0.740 13.7 0.766 14.2
(w) & max vow 0.730 14.3 0.767 14.4
(x) max F0 slope 0.730 14.2 0.765 14.5
(y) 1st max pause 0.750 13.6 0.768 14.3
(yy) 2nd max pause 0.739 14.1 0.766 14.5
(z) 1st max word 0.736 14.2 0.767 14.4
(zz) F0 rise+fall 0.735 14.2 0.766 14.5

Table3: Secondfeature selectionapproach. Correlation and
error (%) betweenhumanandmachinescoresobtainedwith a
corpusincludingbothnativeandnon-nativespeakers.

Extendingtheprincipleof thefirst approach,allowing more
thanfour featuresto be usedtogether, we selectedall features
that,whenusedalone,provideda continuouscorrelationvalue
higherthan > = B�> (aa),> = IE> (ab),and > = IEV (ac)values.Themore
relevantresultsobtainedfor this third approacharein Table4.

With this approach,the best continuouscorrelationwas
achieved in experiment(ab) wherethe selectedfeatureswere:
posterioranddurationscores,ROS,averagedurationbetween
intra-sentencepauses,durationof longestintra-sentencepause,
durationof second-longestintra-sentencepause,second-longest
word durationwithin the sentence,averagedurationbetween
the centerof the longestvowel within the word and the cen-
ter of the lexically primarystressedvowel, maximumduration
speechsegmentwithin which all frameshadfalling pitch, and
relative frequency of a rising pitch frame followed by an un-
voicedframe.

Features discretescores continuousscor.
cont.corr. ] corr. error corr. error

(aa)0.10 0.747 13.6 0.765 14.4
(ab)0.20 0.740 13.7 0.769 14.3
(ac)0.25 0.726 14.2 0.763 14.5

Table4: Third feature selectionapproach. Correlationander-
ror (%) betweenhumanand machine scores obtainedwith a
corpusincludingbothnativeandnon-nativespeakers.

In thefourth approach,extendingtheprinciplesof thesec-
ondandthird approaches,we selectedall featuresthat,asa re-
sult from thesecondapproach,provided a continuouscorrela-
tion valuehigher than > = [ Y\O (ad) and > = [ YGV (ae)values. The
higher correlationscoresobtainedare in Table 5. The sec-
ond approachgave us good results,using only four features
in eachexperiment. In the fourth approachwe combinedthe
featuresthatprovidedthebestresultsobtainedwith thesecond
approach.However, this approachdid not leadto a betterper-
formancethanthesecondapproach.Onthecontrary, theresults
areevenslightly worse.

Features discretescores continuousscor.
cont.corr. ] corr. error corr. error

(ad)0.763 0.736 13.7 0.765 14.2
(ae)0.765 0.735 13.6 0.764 14.3

Table 5: Fourth feature selectionapproach. Correlation and
error (%) betweenhumanandmachinescoresobtainedwith a
corpusincludingbothnativeandnon-nativespeakers.

In anearlierstudy[8], experimentsmadeexclusively with
non-nativespeakersdidnotleadto any improvementwhenpitch
information was usedin addition to the remainingproposed
segmentalfeatures. This was also basicallyfound in the ex-
perimentsdescribedin this paper, which alsoincludeda setof
native speakers,apartfrom results(x) and(zz) in Table3. On
theotherhand,improvementsmaybeobtainedfrom addingfur-
therspecificfeaturesderivedfrom theforcedalignments.Some
featuresbasedondurations— namelyintra-sentencepauses—
revealedpotentialusefor improvements.Weexpectto continue
this work in differentdirections. Futurestepswill includeex-
perimentsinvestigatingtheperformanceof thesefeaturesin dis-
criminatingbetweennativeandnon-native speakersandfurther
featureanalysisandalternative supervisedclassificationtech-
niques.
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